Классификация судовых двигателей | Нева-дизель

Главная \ Полезная информация \ Классификация судовых двигателей

 ТИПЫ СУДОВЫХ ДВИГАТЕЛЕЙ :

По назначению

По мощности 

По характеру сгорания топлива

По способу воздухоснабжения цилиндров

По роду применяемого топлива

По способу воспламенения

По способу смесеобразования

По типу камер сгорания

По частоте вращения коленчатого вала

По быстроходности

По скорости поршня

По направлению вращения коленчатого вала

По конструктивному исполнению

По восприятию поршнем сил от бокового давления

По расположению и числу цилиндров

По способу отвода теплоты

 

МАРКИРОВКА ДИЗЕЛЕЙ И КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ :

 

Чтобы различить отдельные конструктивные разновидности двигателей, им присваивают марки.

Согласно ГОСТ 4393—82 обозначение дизеля должно включать сочетание чисел и букв:

в начале ставят цифру, обозначающую число цилиндров, затем буквы, означающие:

Ч — четырехтактный;

Д — двухтактный;

ДД — двухтактный двойного действия.

В обозначении могут стоять следующие буквы:

Р — реверсивный;

С — с реверсивной муфтой;

П — с редукторной передачей;

К — крейцкопфный;

Н — с наддувом;

Г — газовый.

Если этими особенностями двигатель не обладает, то соответствующие им буквы в обозначение не включают; после букв могут следовать сочетания 1А, 2А, ЗА, 4А, которые обозначают степень автоматизации двигателя в соответствии с ГОСТ 14228—80; затем идет дробь, числитель которой означает диаметр цилиндра, знаменатель — ход поршня в сантиметрах. Иногда включают после дроби через тире цифру— порядковый номер модернизации

двигателя (первая, вторая и т. д), но ГОСТ 4393—82 этого не оговаривает.

Например:

4Ч10,5/13 — четырехцилиндровый четырехтактный дизель с диаметром цилиндра 10,5 см и ходом поршня 13 см,

12ЧНС1А18/20— двенадцатицилиндровый четырехтактный дизель с наддувом и реверсивной муфтой, первой степени автоматизации, диаметр цилиндра 18 см, ход поршня 20 см;

8ЧНСП18/22 — восьмицилиндровый четырехтактный дизель с наддувом и реверс-редуктором, диаметр цилиндра 18 см, ход поршня 22 см.

Дизелестроительные заводы часто присваивают двигателям свои заводские марки, которые строят по произвольному принципу.

Так, например, двигателю 6ЧНСП18/22 завод «Дальдизель» присвоил четыре заводские марки в зависимости от модели и наличия дистанционного управления ДД01, ДД02, ДД03 и ДД04 Завод «Двигатель революции» выпускает двигатели Г60, Г70, Г70-5, которые по ГОСТ 4393—82 должны иметь обозначение 6ЧРН36/45

Дизели, построенные в ГДР, ЧССР и ПНР, обозначают согласно стандартам и нормалям этих стран или их предприятий.

Обозначения двигателей, построенных в ГДР, первого поколения начинают с цифры, указывающей число цилиндров, затем следуют буквы, означающие:

Д(D)— дизель;

Ф(V) — четырехтактный;

H(N) —среднеходовой (отношение хода поршня к диаметру цилиндра 1,3; если это отношение меньше или равно 1,3, то ставят букву К);

А(А) —с наддувом;

У(U) —реверсивный;

C(S) —судовой с реверс-редуктором (с реверсивной муфтой).

После букв указывают ход поршня в сантиметрах.

Например, марка двигателя ГДР превого поколения 8НФД48АУ — восьмицилиндровый

среднеходовой четырехтактный дизель с ходом поршня 48 см, реверсивный с наддувом

Для дизелей ГДР второго поколения наряду с принятыми обозначениями для первого поколения ставят в конце цифры-указатели модификации или цифры, показывающие различие частот вращения коленчатого вала Кроме того, применяют дополнительные буквы

C(S)—дизель приспособлен для работы на тяжелом топливе;

Л (L)—дизель левого исполнения; P(R) — правого исполнения;

р(r) — правого вращения;

л (l) — левого вращения.

Например, для дизелей марки НФД26А-2 последняя цифра «2» обозначает частоту вращения коленчатого вала 750 мин-1 Если же стоит в конце марки двигателя цифра «3», то его частота вращения равна 1000 мин-1

Цифра «2» в марке 6(8)НФД48(А)-2У означает, что дизель относится ко второму поколению.

Дизели третьего поколения имеют марки 6(8)ФД26/20 АЛ-1(2, 3). В них цифры обозначают: в числителе — ход поршня (см), в знаменателе — диаметр цилиндра (см), последние цифры 1, 2, 3 — конструктивные варианты дизелей с разным средним эффективным давлением.

Обозначать марку дизеля с числа цилиндров принято и в ЧССР, но в отличие от марки двигателей ГДР в нее включен диаметр цилиндра в сантиметрах. Буквы в данном случае означают:

Л (L) —судовой (нереверсивный с реверс-редуктором или для непосредственного привода электрогенератора);

С (S) —стационарный,

ПН (PN) — с наддувом;

P(R) — реверсивный; р (r) — с ручным приводом реверса;

А, В, С — тип дизеля

Кроме того, в обозначение введены цифры, характеризующие степень наддува: 1 — низкий, 2 и 3 — средний, 4— высокий.

Например, обозначение дизеля, изготовленного в ЧССР 6-27,5А2Л — шестицилиндровый с диаметром цилиндра 27,5 см, типа А, судовой со средним наддувом.

Климатическое исполнение

Машины, приборы и другие технические изделия, а следовательно, и дизели могут быть выпущены в нескольких исполнениях, в зависимости от того для работы в каком климатическом районе они предназначены.

Каждому климатическому исполнению отечественного изделия присваивают условное обозначение — букву русского алфавита Аналогичные исполнения изделий, выпускаемых некоторыми странами СЭВ, обозначают буквами латинского алфавита, приводимыми ниже в скобках.

Почти вся европейская часть России относится к макроклиматическому району с умеренным климатом. Изделиям этого климатического исполнения присвоено обозначение У (N). Для районов с холодным климатом, к которым относится крайний север европейской части России и большая часть Сибири, выпускают изделия исполнения XЛ (F).

Район Каспийского моря и южное побережье Черного моря имеют сухой тропический климат, для которого выпускают изделия исполнения ТС (ТА) или Т (Т), причем исполнение Т предусматривает возможность работы изделия и в районах с влажным тропическим климатом.

Особые обозначения климатических исполнений предусмотрены для изделий, используемых на морских судах, а именно:

для умеренного холодного морского климата, т. е. для районов, расположенных севернее 30° северной широты и южнее 30° южной широты, — М (М);

для тропического морского климата при плавании только в тропической зоне — ТМ (МТ);

для неограниченного района плавания — ОМ (MU.).

Если изделие может работать во всех макроклиматических районах на суше и на море, то его выпускают исполнения В (W).

 наверх  

ТИПЫ ДВИГАТЕЛЕЙ :

По назначению                                                                                          

В зависимости от назначения в народном хозяйстве применяют различные двигатели с теми или иными особенностями. По этому признаку различают судовые двигатели, предназначенные для установки на судах или других плавсредствах. Такие двигатели должны быть оборудованы в соответствии с требованиями Речного Регистра или Регистра России для привода судовых движителей или вспомогательных агрегатов.

 

Устанавливаемые на судах и плавсредствах двигатели делятся на главные и вспомогательные. Главным называют двигатель, являющийся источником энергии для выполнения основной задачи судна: у транспортных судов—приведение в действие судового, движителя, на судах и плавсредствах технического флота — перемещение грунта (у земснарядов), или перекачивание нефтепродуктов (у нефтестанций) и др.

Остальные судовые двигатели относят к вспомогательным. Они предназначены для привода электрогенераторов судовых электростанций, лебедок, компрессоров, насосов и других механизмов.

Устанавливаемые на тепловозах двигатели называют тепловозными.

Промышленные двигатели предназначены для использования на наземных стационарных или передвижных установках: электростанциях, насосно-перекачивающих или компрессорных станциях, холодильных установках рефрижераторов и т. д.

Широко распространены транспортные двигатели — автомобильные и тракторные. Измененные и приспособленные для работы в других условиях (например, в качестве судовых) такие двигатели получили название конверсионных. 

 наверх  

По мощности

Согласно классификации Центрального научно-исследовательского дизельного института (ЦНИДИ) двигатели по агрегатной мощности делят на 4 группы: менее 74 кВт — маломощные; 74—736 —

средней мощности; более 736—7360— мощные; более 7360 кВт — сверхмощные.

Мощность главных судовых двигателей серийных судов доходит до 1600 кВт.

По способу осуществления рабочего цикла. В зависимости от того за сколько ходов поршня происходит рабочий процесс в цилиндре, различают четырех и двухтактные двигатели Последние могут быть с прямоточной продувкой, когда чистку и заполнение цилиндра осуществляет осевой поток воздуха. Впускные 1 и выпускные 2 органы расположены на противоположных концах цилиндра.

В некоторых двухтактных двигателях предусмотрена поперечная или контурная продувка. В этом случае продувочные потоки воздуха движутся в цилиндре по его контуру (рис. 7), совершая поворот у в. м. т. Продувочные 1 и выпускные 2 окна расположены в нижней части цилиндра на диаметрально противоположных его сторонах (рис. 7,а).

Двухтактный двигатель, у которого продувочные потоки воздуха сначала омывают днище поршня 3 (рис. 7,6), а затем, описав петлю, по контуру цилиндра направляются к выпускным окнам 2, расположенным над продувочными 1 на одной и той же стороне цилиндра, имеет петлевую продувку.

 наверх  

По характеру сгорания топлива

Как в двухтактных, так и в четырехтактных дизелях, работающих по циклу со смешанным сгоранием топлива, часть топлива сгорает при постоянном объеме (см. рис. 2, линия cz'), часть — при постоянном давлении (линия zz'). Существует цикл и со сгоранием топлива при постоянном объеме, когда все оно сгорает в момент нахождения поршня в в. м. т.

На рис. 8 изображены совмещенные диаграммы разных циклов. Следует оговориться, что для большей наглядности на диаграмме рис. 2 были не в соответствии с масштабом ординат раздвинуты линии всасывания а'а и выпуска r'r. В действительности разность давлений  выпуска и впуска очень мала и в масштабе ординат, принятом на рис. 2, эти линии практически сливаются в одну вместе с линией ро, как, например, на рис. 8.

Нормальная диаграмма цикла со сгоранием при постоянном объеме (изохорный цикл) показана на рис. 8 сплошными линиями. На этой диаграмме r1a — линия всасывания; — линия сжатия; C1Z1 — линия сгорания; Z1b,— линия расширения; Ьа — линия свободного выпуска; аr1 слившаяся с r1а,—линия принудительного выпуска.

Коэффициент полезного действия (к. п. д) рабочего цикла теплового двигателя зависит от разности максимальной и минимальной температур рабочего тела (газа, пара) чем она больше, тем выше к. п. д. В ДВС разность температур рабочего тела является функцией степени сжатия. Если сравнить циклы с одинаковыми степенями сжатия, то к. п. д. двигателей с изохорным циклом будет выше, чем к. п. д двигателей со смешанным сгоранием

Положительное влияние повышения степени сжатия на к. п. д. заставляет стремиться к этому повышению. В двигателях с изохорным циклом такой путь труден, ибо связан со значительным ростом максимального давления цикла

Диаграмма r1ac1z1ba1r на рис. 8 построена для степени сжатия e1 = 7. Здесь же построены диаграммы r2ac2z2ba2r (тонкие линии) изохорного и r2ac2z3  z3bar(штрихи) смешанного циклов, соответствующие степени сжатия e2=14.

р6

Рис. 6 Конструктивные схемы прямоточной продувки двухтактных двигателей


р7

Рис. 7 Типы поперечных и контурных продувок двухтактных двигателей


р8

Рис. 8 Совмещенные диаграммы изохорного и смешанного циклов двигателей

 Как видно из рисунка, при той же степени сжатия e2 максимальное давление рzз смешанного цикла будет ниже, чем давление рz2 изохорного. Значит, при смешанном цикле нагрузки на детали будут ниже, чем при изохорном, поэтому детали могут быть меньших размеров, а изготовлять их можно из более дешевых материалов.

Если сравнить смешанный и изохорный циклы при одинаковом их максимальном давлении (а в этом случае степень сжатия у изохорного будет меньше), то к п д двигателей смешанного цикла окажется выше. А отсюда и применимость циклов: двигатели низкого сжатия, например автомобильные, работают по изохорному циклу, двигатели высокого сжатия (дизели) — по смешанному.

Распространенность менее экономичных, чем дизели, двигателей низкого сжатия можно объяснить их надежностью, относительно простой конструкцией и меньшей шумностью в работе.

 наверх  

По способу воздухоснабжения цилиндров

В зависимости от способа заполнения цилиндров воздухом — без повышения давления или под давлением выше атмосферного — различают соответственно двигатели без наддува и с наддувом При наддуве создается повышенное давление воздуха в конце процесса наполнения, в результате чего в том же объеме цилиндра будет заключена большая масса воздуха, что позволит сжечь большее количество топлива, впрыскиваемого за цикл, а значит, увеличить работу и мощность двигателя.

р9

Рис. 9 Схемы наддува двигателей

Для создания наддува четырехтактные двигатели оборудуют компрессорами, подающими к впускным клапанам воздух под давлением выше атмосферного у двухтактных двигателей с наддувом продувочный воздух поступает под более высоким давлением, чем у двигателей без наддува. Для этого, кроме продувочного насоса, двигатели снабжают дополнительным компрессором, причем иногда не одним.

Компрессор 4 (рис. 9, а), вырабатывающий наддувочный воздух, может быть приведен в движение от коленчатого вала с помощью повышающей передачи 5 Такой наддув называют механическим Нагнетаемый компрессором 4 воздух поступает по трубе 3 в наддувочный коллектор 2, а затем к впускным клапанам 1 цилиндров.

На механический наддув затрачивается часть полезной мощности двигателя и в результате снижает его экономичность, что особенно заметно при высоких давлениях наддува. Поэтому механический наддув широко не применяют На речном флоте встречается лишь один тип двигателя с механическим наддувом — двигатель М 400

Некоторые двигатели изготовляют с так называемым посторонним наддувом, когда наддувочный воздух предварительно сжимает компрессор, приводимый от независимого источника энергии. Наиболее часто применяют двигатели с газотурбинным наддувом. В этом случае выпускные газы из цилиндров 1 (рис 9,6), поступающие в коллектор 2, а из него в корпус 3 газовой турбины, заставляют вращаться ротор 4, на одном валу с которым насажено рабочее колесо 5 компрессора. Засасываемый из атмосферы воздух поступает под давлением в наддувочный коллектор 6, а оттуда в цилиндры при открытии впускных клапанов 7 При газотурбинном наддуве утилизируют энергию выпускных газов, которая в двигателях без наддува искусственно погашается в глушителе Правда, с введением турбины повышается сопротивление выпуску, т е. увеличивается затрата энергии на такт выпуска, но она меньше, чем при механическом наддуве, примерно в 3 раза. Поэтому газотурбинный наддув повышает экономичность работы двигателя.

В свою очередь различают газотурбинный наддув при постоянном давлении, когда выпускные газы из всех цилиндров поступают в общий выпускной коллектор, где вследствие большого объема выпускного коллектора давление газов перед турбиной близко к постоянному, а оттуда на лопатки газовой турбины, и импульсный.

Импульсный газотурбинный наддув применяют с целью лучшего использования энергии выпускных газов, для чего один или несколько выпускных трубопроводов с относительно малой площадью поперечного сечения соединяют цилиндры с неперекрывающимися фазами выпуска, в результате чего выпускные газы непрерывно поступают в турбину При импульсном наддуве используют и преобразователи импульсов. В этом случае выпускные газы подводят к турбине через преобразователь импульсов, состоящий из ряда сужающихся сопел и смесителей, предназначенных для выравнивания давления и расхода выпускных газов. В двухтактных малогабаритных двигателях с импульсным наддувом обеспечивается постоянный газообмен в цилиндрах на всех режимах при одноступенчатом сжатии воздуха в турбокомпрессоре.

В двухтактных двигателях с контурными и прямоточными продувками применяют комбинированный наддув. В зависимости от способа подключения приводных компрессоров или турбокомпрессоров, различают три схемы наддува, с последовательным, с паралелльным и с последовательно-параллельным подключением тех или других компрессоровю. Кроме перечисленных разновидностей газотурбинного наддува возможен также динамический, или волновой, наддув, при котором инерция и колебательное движение потоков газа в процессах впуска и выпуска способствуют улучшению наполнения цилиндров.

Иногда двигатель оборудуют устройством — волновым обменником, в котором давление выпускных газов используют непосредственно для сжатия наддувочного воздуха (наддув тип а «Компрекс»).

 наверх  

По роду применяемого топлива.

Большинство двигателей работает на жидком топливе. Двигатели жидкого топлива делят на 2группы светлого (бензины, керосины и др.) и темного (дизельное, моторное, газотурбинное и др ) топлива. Двигатели, которые без конструктивных изменений могут работать на жидком топливе различных фракционных составов, называют многотопливными. Кроме них, существуют двухтопливные двигатели, которые могут работать на жидком или газообразном топливе и во время работы по необходимости их можно переводить с топлива одного вида на другой.

На наземных установках распространены газовые и газожидкостные двигатели. В первых используют газообразное топливо, которое воспламеняется принудительно электрической искрой или самовоспламеняется от сжатия, как у дизелей, работающих на жидком топливе. Достоинство газовых двигателей — малая токсичность выпускных газов.

Газожидкостные двигатели работают с воспламенением от сжатия. Основное топливо — газообразное, а жидкое, в небольших количествах впрыскиваемое в цилиндр при подходе поршня к в.м.т., самовоспламеняется и поджигает основное газообразное топливо.

 наверх  

По способу воспламенения

В двигателях с внутренним смесеобразованием самовоспламенение смеси топлива и воздуха осуществляется благодаря высокой температуре в цилиндре, возникшей только в результате его сжатия В двигателях низкого сжатия самовоспламенение невозможно, поэтому в них предусмотрено принудительное зажигание топлива электрической искрой. Эти двигатели называют двигателями с искровым зажиганием в отличие от дизелей, называемых двигатели с самовоспламенением от сжатия.

Двигателестроительные заводы выпускают конвертируемые двигатели. Путем некоторых конструктивных изменений их можно преобразовать в двигатели с искровым зажиганием или в дизели.

 наверх  

По способу смесеобразования

В двигателях газовых и светлого жидкого топлива, как правило, предусматривают внешнее смесеобразование, т. е. в цилиндр поступает готовая горючая смесь топлива с воздухом. Эта смесь образуется в особом смесителе.

При использовании жидкого топлива смеситель называют карбюратором.

В двигателях с внутренним смесеобразованием воздух и топливо поступают в цилиндр раздельно, смешение их происходит внутри цилиндра. Организовать хорошее перемешивание топлива с воздухом при внутреннем смесеобразовании значительно труднее, чем при внешнем. Создать двигатели с внешним смесеобразованием для темного топлива не удается: если легкое светлое топливо в процессе смешения с воздухом испаряется, то темное остается в жидкой фазе и выпадает из смеси по пути в цилиндр, оседая на стенках коллекторов и патрубков.

У дизелей с внутренним смесеобразованием распыливание топлива может быть объемное, когда большая часть впрыскиваемого топлива распределяется в воздушном заряде, занимающем объем камеры сгорания; пленочное — большая часть впрыскиваемого топлива направляется на стенки камеры сгорания, образуя на них тонкую пленку, и лишь незначительная часть распыливается и перемешивается с воздушным зарядом за период впрыскивания и объемнопленочное, когда одна часть впрыскиваемого топлива распределяется в объеме воздушного заряда, а другая направляется на стенки камеры сгорания, образуя на них пленку.

 наверх  

По типу камер сгорания

Формы камер сгорания, образованные поверхностями днищ поршней и крышек (головок) цилиндров, используемые для смесеобразования, бывают различными. Образцом двигателя с камерой сгорания в поршне является дизель 6ЧСП 18/22, в котором для смесеобразования и сгорания используется камера в головке поршня, соединяющаяся с надпоршневым пространством горловиной с проходным сечением, обеспечивающим перетекание воздуха с малыми скоростями и небольшими перепадами давлений. В такой конструкции организованное вихреобразование обеспечивается за счет радиально-направленных потоков воздуха, перетекающих из кольцевого надпоршневого пространства внутрь камеры, либо за счет тангенциально направленных потоков, образующихся во входных каналах головки.

Если камера сгорания размещена в головке поршня и в крышке (головке) цилиндра или между днищами поршней, такой двигатель называют двигателем с открытой камерой сгорания и непосредственным впрыскиванием топлива.

Для создания однородной топливновоздушной смеси при вихрекамерном спосрбе смесеобразования используют принцип вихревого движения воздуха в надпоршневом пространстве. При пониженном давлении впрыскивания топлива и коэффициенте избытка воздуха это позволяет добиться более полного сгорания топлива в двигателях с небольшими диаметрами цилиндров (4Ч10,5/13). В вихрекамерном двигателе смесеобразование и сгорание топлива в основном происходят в вихревой камере.

В некоторых конструкциях высокооборотных дизелей предусмотрен предкамерный способ смесеобразования. В этом случае для смесеобразования используют перепад давлений, возникающий в результате предварительного частичного сгорания топлива, вводимого в предкамеру. При таком способе смесеобразования камера сгорания состоит из предкамеры, расположенной в крышке цилиндра, и основной камеры, заключенной между днищами поршня и крышки.

У воздушно-камерных двигателей для смесеобразования используют струю воздуха, создаваемую в дополнительной части — воздушной камере во время процесса сжатия. Во время процесса расширения воздух из камеры вытекает. Распыливание и смесеобразование происходят вне воздушной камеры.

 наверх  

По частоте вращения коленчатого вала

Согласно ГОСТ 10448—80 двигатели делят на 5 групп:

I — рабочий режим при эксплуатации не контролируется, частота вращения коленчатого вала более 1800 мин-1;

II—двигатели без наддува, частота вращения коленчатого вала 1500 мин-1 и более;

III—двигатели с наддувом, частота вращения коленчатого вала 1500 мин-1 и более;

IV — частота вращения от 250 мин-1 до 1500 мин-1;

V — частота вращения менее 250 мин-1.

 наверх  

По быстроходности

Тепловые и динамические напряжения в двигателе зависят от средней скорости поршня, которая является функцией частоты вращения коленчатого вала и хода поршня. Так как за один оборот вала поршень делает 2 хода, то можно записать

cm = 2sn/60,

где сm —- средняя скорость поршня, м/с; s — ход поршня, м,

n — частота вращения коленчатого вала, мин-1

После сокращений

сm = sn/30

 наверх  

По скорости поршня

Двигатели по значению средней скорости поршня Делят на 3 группы:

сm<6,5 м/с —тихоходные;

сm= (6,5/9) м/с — средней быстроходности; сm

Чем выше средняя скорость поршня, тем двигатель при той же мощности компактнее, легче. Это — очень большое преимущество двигателей средней

быстроходности и быстроходных, так как при их установке можно уменьшить размеры машинного отделения и увеличить грузовместимость и грузоподъемность судна. Двигатель с небольшими габаритными размерами и массой можно для ремонта снять с судна целым агрегатом и отправить в цех, тогда как крупные ремонтируют на месте, в неудобных условиях.

Вместе с тем при высокой средней скорости поршня сокращается срок службы двигателя, снижается его экономичность (больше расход топлива и смазочного масла), повышается шум от работы. В связи с этими недостатками быстроходные двигатели устанавливают лишь на судах, где строго ограничены размеры машинного отделения. Основной серийный флот оснащен среднеоборотными тихоходными двигателями. На некрупных транзитных судах и местном флоте установлены двигатели средней быстроходности с частотой вращения 750—1500 мин-1 а на судах с подводными крыльями — быстроходные с частотой вращения до 1700 мин-1.

 наверх  

По направлению вращения коленчатого вала

Двигатели конструируют левого и правого вращений. Направление (сторона) вращения определяют при взгляде с кормы (или от генератора) на верхнюю часть маховика.

Если в СЭУ два главных двигателя, работающих каждый на свой винт (двухвальная установка), то их ставят с разным направлением вращения.

Не следует отождествлять левый (правый) двигатель с двигателем левого (правого) вращения. Левый или правый двигатель (двигатели левой или правой моделей) — это двигатель, предназначенный для установки по соответствующему борту в машинном отделении. В целях упрощения контроля работы двух двигателей сразу их стороны распределения размещают к диаметральной плоскости судна. Если двигатель левый, то при взгляде с кормы сторона распределения будет у него справа, у правого — слева. Следовательно, двигатели левой или правой моделей по своей компоновке являются зеркальными отображениями один другого. Сочетание типа модели и направления вращения в двигателе может быть различным, т. е. левый двигатель может иметь как левое, так и правое вращение.

Для сообщения судну движения вперед и назад гребной винт должен вращаться в разных направлениях. Большая часть главных двигателей может работать при любом направлении вращения вала. Такие двигатели называют реверсивными. На флоте используют много двигателей нереверсивных, т. е. таких, которые работают лишь при одном направлении вращения коленчатого вала. Нереверсивными бывают и главные двигатели. В этом случае в составе СЭУ теплохода предусматривают реверсивную муфту позволяющую изменять направление вращения гребного винта при неизменном направлении вращения вала двигателя.

р10

Рис. 10 Схема двухтактного крейцкопфного двигателя

 Установка реверсивной муфты — это недостаток нереверсивных двигателей Их преимуществами являются упрощенная конструкция самого двигателя и увеличенный срок службы. Последнее объясняют тем, что реверсивная муфта позволяет отключить винт от вала двигателя, ибо каждый пуск двигателя увеличивает износ его трущихся деталей.

 наверх  

По конструктивному исполнению.

До сих пор рассматривали двигатели простого действия, у которых рабочий процесс совершается только в одной полости цилиндра. Существуют двухтактные двигатели двойного действия, имеющие две рабочие полости. Такие двигатели изготовляют только крейцкопфными, в каждом цилиндре предусматривают две крышки, сверху и внизу.

Двигатели двойного действия развивают мощность примерно в 2 раза больше, чем двигатели простого действия, однако они недостаточно надежны: в очень тяжелых условиях работают поршень и особенно шток. Поэтому двигатели двойного действия в настоящее время не строят, хотя на морском флоте они еще сохранились. В современных дизелях нижнюю (подпоршневую) полость иногда используют как компрессор для выработки наддувочного воздуха.

На судах почти не применяют двигатели с противоположно движущимися поршнями. Эти двигатели двухтактные, в каждом цилиндре которых по 2 механически связанных поршня, движущихся в противоположных направлениях Между поршнями располагается камера сгорания.

 наверх  

По восприятию поршнем сил от бокового давления

В этом случае двигатели классифицируют на тронковые и крейцкопфные Все ранее описанные схемы двигателей относятся к тронковым: их поршень соединен пальцем непосредственно с шатуном. В крейцкопфном двигателе (рис. 10) поршень 2 штоком 1 соединен с крейцкопфом (ползуном) 3, который сцеплен с шатуном 5. Крейцкопф 3 движется в направляющих (параллелях) 4, препятствующих его горизонтальному смещению Крейцкопфные двигатели значительно выше тронковых, примерно на размер хода поршня, и, следовательно, тяжелее Преимущество их перед тронковыми — меньше изнашиваются детали цилиндропоршневой группы Это объясняют тем, что нормальную (по отношению к оси цилиндра) силу PN, получающуюся в результате разложения силы Р, действующей на поршень, воспринимает крейцкопф 3 В тронковом двигателе эта сила прижимает поршень к стенке цилиндра Крейцкопфные двигатели меньше расходуют смазочного масла Чем больше размеры и мощность дизелей, тем чаще их строят крейцкопфными.

 наверх  

По расположению и числу цилиндров

Чем больше число цилиндров, тем сложнее двигатель, поэтому увеличивать их можно до разумных пределов. Однако чем больше число цилиндров, тем чаще следуют один за другим рабочие ходы и вал вращается равномернее. Кроме того, если предусмотрен пуск двигателя сжатым воздухом, то в двухтактном двигателе должно быть не менее четырех цилиндров, а в четырехтактном — не менее шести. Только в этом случае при любом положении коленчатого вала по крайней мере один из поршней будет в пусковом положении: в начале хода расширения, когда сжатый воздух может сдвинуть поршень вниз. Если число цилиндров будет меньше указанного, то перед пуском двигателя его вал придется, вероятно, повернуть вручную для того, чтобы какой-нибудь поршень пришел в пусковое положение. При выборе числа цилиндров стремятся уравновесить силы инерции движущихся частей и моментов  этих сил с тем, чтобы двигатель не вызывал значительной вибрации корпуса судна. Подробнее об этом сказано ниже.

По расположению цилиндров различают двигатели однорядные, у них цилиндры располагают в один ряд вдоль коленчатого вала, и двухрядные, а также наклонные, вертикальные и горизонтальные.

р11

Рис. 11 Схема V образного двигателя

 В наклонных двигателях предусмотрен один ряд цилиндров, расположенных между вертикальной и горизонтальной плоскостями, проходящими вдоль оси коленчатого вала В вертикаль ных двигателях может быть один или несколько рядов цилиндров, расположенных в вертикальной плоскости над или под коленчатым валом Большинство судовых двигателей однорядные вертикальные. Один или несколько рядов цилиндров горизонтального двигателя расположены в горизонтальной плоскости.

Два параллельных ряда цилиндров с двумя коленчатыми валами образуют двухрядный двигатель. На флоте достаточно широко распространены V-образные двигатели Как видно из схемы этого двигателя (рис 11), оси цилиндров 3 и 4 разных рядов расположены под углом ф, равным 45—90° (угол развала цилиндров) Шатуны 2 и 5 двух цилиндров разных рядов работают на один кривошип 1 У V-образных двигателей меньше высота и масса, чем у одно рядных, в этом их большое преимущество, но они менее удобны в обслуживании.

Кроме перечисленных, промышленность выпускает оппозитные двигатели (2 ряда цилиндров расположены в одной плоскости с противоположных сторон от оси коленчатого вала), а также звездобразные, многоугольные с расположением рядов цилиндров в виде букв Н, X, W

 наверх  

По способу отвода теплоты

В зависимости от того каким способом отводится теплота от нагретых при работе деталей, различают двигатели жидкостного и воздушного охлаждения. Все судовые двигатели оборудованы жидкостными системами охлаждения В качестве охлаждающих жидкостей применяют воду, масло и топливо: масло для охлаждения головок поршней, топливо — форсунок, воду — цилиндров и крышек (головок) цилиндров.

У двигателей с воздушным охлаждением цилиндры и головки делают оребренными для увеличения поверхности, омываемой воздухом Такие двигатели легче, чем двигатели с водяным охлаждением, проще и дешевле Они широко распространены в наземном транспорте.